

SIDDARTHA INSTITUTE OF SCIENCE AND TECHNOLOGY:: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road – 517583 <u>OUESTION BANK (DESCRIPTIVE)</u>

Subject with Code: BIG DATA ANALYTICS(18CS0538) **Regulation:** R18

Course & Branch: B.Tech - CSE Year & Sem: IV-B.Tech & I-Sem

UNIT –I Introduction To Big Data And Hadoop

	a)	Define data?		[2M]
			[L1][CO1]	
	b)	What are the four V's of big data.	[L1][CO1]	[2M]
1	c)	Summarize the data types for Big data	[L2][CO1]	[2M]
	d)	Define Hadoop streaming	[L1][CO2]	[2M]
	e)	Formulate Hadoop development	[L6][CO2]	[2M]
2	a)	Examine the different types of digital data with examples?	[L4][CO1]	[5M]
	b)	Discuss Big Data in terms of three dimensions, volume, variety and velocity.	[L2][CO1]	[5M]
3		Establish the Evolution of Hadoop ecosystem with neat diagram.	[L3][CO2]	[10M]
4		Explain the difference between structure, unstructured and semi-structure data	[L4][CO1]	[10M]
-		with an examples.		
5	a)	List the Top challenges facing big data.	[L1][CO1]	[5M]
	b)	What is the Significance of big data analytics	[L1][CO1]	[5M]
6		Distinguish between Analysis of data through Unix tools and Hadoop		[10M]
0		Ecosystem	[L4][CO5]	
7	a)	What is big data analytics? Identify the Classification of Analytics	[L3][CO1]	[5M]
	b)	Illustrate in detail about Hadoop streaming	[L2][CO2]	[5M]
8	a)	What is Big Sheets? What can be done with big sheets?	[L1][CO6]	[5M]
	b)	Explain in detail about Infosphere Big Insights ?	[L2][CO6]	[5M]
9	a)	Discriminate the Big Data in Healthcare, Trasportation & Medicine.	[L5][CO1]	[5M]
	b)	Why business are using big data for competitive advantage?	[L4][CO1]	[5M]
10	a)	How to implement IBM Big Data Strategy?	[L2][CO1]	[5M]
	b)	Generalize the list of tools related to Hadoop.	[L6][CO2]	[5M]

	a)	What is the Hadoop file system	[L1][CO1]	[2M]
	b)	Enumerate about Data flow	[L1][CO1]	[2M]
1	c)	Define data injection in sqoop	[L1][CO2]	[2M]
	d)	Distinguish between horizontal file format and vertical File format	[L2][CO2]	[2M]
	e)	Construct the need for a distributed file system	[L3][CO3]	[2M]
2		What are the advantages of Hadoop? Explain Hadoop Architecture and its Components with proper diagram	[L3][CO2]	[10M]
3		Explain the block, name node and data node in Hadoop file system	[L2][CO3]	[10M]
4		Determine the basic commands in Hadoop command line interface.	[L3][CO5]	[10M]
5	a)	What is an interface? Establish the Hadoop system interfaces	[L3][CO2]	[5M]
	b)	Discuss about the Hadoop Archives and its Limitations	[L2][CO2]	[5M]
6		Describe the File read and File write operations in HDFS	[L1][CO5]	[10M]
7	a)	Discuss about the data ingest operation using sqoop and flume	[L2][CO2]	[5M]
	b)	Differentiate the compression and serialization operation in Hadoop I/O.	[L4][CO2]	[5M]
8		Elaborate the AVRO file format with a diagram	[L6][CO3]	[10M]
9	a)	What is data serialization?	[L3][CO3]	[3M]
	b)	Demonstrate the File Based Data structures.	[L2][CO2]	[7M]
10	a)	Analyze the features of Apache Hadoop.	[L4][CO6]	[5M]
	b)	How does Hadoop work?	[L2][CO2]	[5M]

UNIT –II HDFS(Hadoop Distributed File System)

UNIT –III Map Reduce

			1	
1	a	What is Shuffling in MapReduce?.	[L1][CO1]	[2M]
	b	Define MapReduce.	[L1][CO1]	[2M]
	c	Compare Shufling and Sorting in MapReduce.	[L2][CO1]	[2M]
	d	List the parameters of mappers and reducers?	[L1][CO2]	[2M]
	e	Find the role of combiner and partitioner in map reduce application?	[L3][CO2]	[2M]
2	a)	Examine the Anatomy of a MapReduce Job Run.	[L4][CO4]	[4M]
	b)	Construct the Classic MapReduce Job Run with a neat diagram.	[L6][CO5]	[6M]
3		Estimate the Significance of YARN over Classic MapReduce Job Run.	[L5][CO3]	[10M]
4		What are the different types of failures in	[L1][CO1]	[10M]
		a)Classic MapReduce		
		b)YARN		
5	a)	Examine the different types of Job Scheduling process in Map	[L3][CO4]	[5M]
		Reduce.		
	b)	Describe the Default MapReduce Job.	[L3][CO4]	[5M]
6		Describe the Shuffle and Sort operations in Map side and Reduce side	[L1][CO3]	[10M]
7	a)	What are the Properties in Task Execution Environment.	[L1][CO4]	[5M]
	b)	Discuss about Speculative Execution and its Properties.	[L2][CO4]	[5M]
8		Categorize the different types of input formats in MapReduce.	[L4][CO2]	[10M]
9		Examine the different types of output formats in MapReduce.	[L3][CO2]	[10M]
10		Contrast the below features in MapReduce.	[L4][CO3]	[10M]
		a) Counters b) Sorting c) Joins		

UNIT –IV Hadoop Eco System-Pig

1	a	Define Pig Latin.	[L1][CO1]	[2M]
	b	Illustrate and Give two examples of user defined functions.	[L2][CO2]	[2M]
	c	What is Grunt?	[L1][CO2]	[2M]
	d	Compare any two execution modes of pig.	[L2][CO5]	[2M]
	e	What are pig Latin relational operators	[L1][CO2]	[2M]
2	a)	Identify the features of PIG.	[L2][CO3]	[2M]
	b)	How to Install and execute PIG on Hadoop Cluster	[L2][CO5]	[8M]
3	a)	Compare the PIG with Databases with an Example	[L5][CO3]	[5M]
	b)	Evaluate the Expressions and types in Pig Latin.	[L4][CO4]	[5M]
4	a)	Why Do We Need Apache Pig?	[L4][CO2]	[5M]
	b)	Examine the different execution modes available in Pig	[L3][CO4]	[5M]
5		Construct User Define Functions in Pig Latin.	[L6][CO5]	[10M]
6	a)	Explain about Arithmetic Operators in Pig Latin.	[L2][CO3]	[5M]
	b)	Find the Grouping and Joining Data in Pig Latin.	[L3][CO3]	[5M]
7		Examine the Relational Operators in Pig Latin.	[L4][CO2]	[10M]
8		Develop the Schemas and Functions in Pig Latin	[L3][CO5]	[10M]
9	a)	Explain about the data types in Pig Latin.	[L2][CO2]	[5M]
	b)	Develop a program to calculate the maximum recorded temperature by year for	[L6][CO5]	[5M]
		the weather dataset in Pig Latin.		
10	a)	Discriminate the Structures, Statements in Pig Latin	[L4][CO1]	[5M]
	b)	Evaluate Data Processing Operators in Pig Latin.	[L5][CO4]	[5M]

UNIT –V Hive, Hbase, Big SQL

1	a	List out 5 hive shell commands.	[L1][CO1]	[2M]
	b	Sketch about Hbase.	[L3][CO2]	[2M]
	с	Examine Metadata	[L4][C01]	[2M]
	d	Report about Big SQL	[L1][CO6]	[2M]
	e	Critique about the advantages of Hive query language	[L5][CO3]	[2M]
2		Discuss about Hive shell command line interface.	[L2][CO5]	[10M]
3	a)	Examine about Hive architecture with a neat diagram	[L3][CO2]	[5M]
	b)	Explain about components Hive architecture	[L2][CO2]	[5M]
4	a)	Deduce the various services offered by Hive.	[L4][CO4]	[5M]
	b)	Examine the Characteristics of HBase	[L4][C01]	[5M]
5	a)	Infer the advantages of Hive over traditional databases?	[L2][CO5]	[5M]
	b)	what are the operators and functions in HIVE?	[L1][CO2]	[5M]
6	a)	Appraise about Hive query language?	[L4][CO5]	[5M]
	b)	Review Metastore in Hive?	[L2][CO5]	[5M]
7		Differentiate between of Hbase over RDBMS.	[L4][C01]	[10M]
8		Explain with a neat diagram the architecture of Hbase.	[L2][CO2]	[10M]
9	a)	Categorize the joins in HiveQL	[L4][CO5]	[5M]
	b)	Report the Implementation of queries on sorting and aggregation of data in Hive	[L6][CO3]	[5M]
10	a)	Explain about IBM Big SQL?	[L2][CO6]	[5M]
	b)	Assess how HBase is implemented at Streamy.com	[L4][CO6]	[5M]

Prepared by: G. Ravi Kumar